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Abstract
The structural parameters, elastic constants and electronic structure of NbB2 under pressure are
investigated by using first-principles plane-wave pseudopotential density functional theory
within the generalized gradient approximation (GGA). The obtained results are in agreement
with the available theoretical data. It is found that the elastic constants and the Debye
temperature of NbB2 increase monotonically and the anisotropies weaken with pressure. The
band structure and density of states (DOS) of NbB2 under pressure are also presented. It is the
σ hole that determines the superconductivity in NbB2, and the features of the σ bands are
unchanged after applying pressure except for a shift of position. The density of states (DOS)
at the Fermi level decreases with increasing pressure, in conjunction with Bardeen–
Cooper–Schrieffer (BCS) theory, which can predict Tc decreasing with pressure,
in agreement with the trend of the theoretical Tc versus pressure.

1. Introduction

Since the discovery of superconductivity at Tc = 39 K in
MgB2 [1], the physical properties of the group V transition
metal diborides with simple hexagonal AlB2-type structure
have attracted significant interest. In particular, the diborides
of transition metals observed by Buzea et al [2] are not
superconducting except for NbB2. Hexagonal NbB2 (space
group P6/mmm, a = 3.116 Å, c = 3.264 Å [3]) has been
reported to show superconductivity, Tc = 3.87 K [4]. The
transition temperature Tc in Nb1−xB2 (0 < x < 1) increases to
around 9 K, especially in Nb-deficient samples, though NbB2

did not show superconductivity at T < 1.8 K [5]. A series of
studies [6–10] confirmed these results; in particular, the highest
Tc ∼ 9.8 K was observed in Nb1−xB2(B/Nb = 2.34) [7].

5 Authors to whom any correspondence should be addressed.

Due to a great deal of attention on NbB2, several research
groups have investigated the physical properties of NbB2.
Islam et al [11, 12] studied the zero-pressure elastic constants
and electronic structure of NbB2 using ab initio density
functional theory and found that the superconducting transition
temperature decreases under pressure. Using the full-potential
linearized augmented plane-wave (FP-LAPW) method, the
influence of lattice vacancies on the structural, cohesive, and
electronic properties of Nb and Mo diborides were obtained
by Shein et al [13]. With the full-potential density-functional-
based methods, Singh [14] investigated the significant
differences in electron–phonon interaction of MgB2 and
NbB2, which lead to the distinction of their superconducting
transition temperatures. The electronic structure and
structure equilibrium parameters of some AlB2 type transition
metal diborides were calculated by Vajeeston et al [15]
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Table 1. Calculated structure parameters of NbB2 compared with the experimental and theoretical results at 0 GPa and 0 K.

a (Å) c (Å) V (Å
3
) B0 (GPa) B ′ rNb−B rB−B

Present 3.1136 3.3066 27.8 294.9 3.99 2.442 1.798
Reference [11] 3.1598 3.4003 29.4 232.4 3.60 2.488 1.820
Reference [13] 3.1110 3.3086 27.7 2.4416 1.7959
Reference [14] 3.0745 3.2280 26.4
Reference [15] 3.1070 3.3180 27.8 2.447 1.794
Reference [16] 3.093 3.337 27.3 2.477 1.794
Exp. [3] 3.116 3.264 27.4
Exp. [14] 3.089 3.3047 27.3

using the self-consistent tight-binding linear muffin-tin orbital
method. The phonon density of states of transition
metal diborides TMB2 (TM = Ti, V, Ta, Nb, and Y) has
been measured using the technique of inelastic neutron
scattering [16].

Elastic properties of a solid are closely correlated with
various fundamental physical properties, such as specific
heat, melting point, interatomic bonding, equation of states,
Debye temperature, thermal expansion coefficient, and so
on. Moreover, what is more important, the knowledge of
elastic constants of a solid provides access to understand the
mechanical properties for practical application in many fields,
e.g. sound velocity, anisotropy, thermoelastic stress, load
deflection, fracture toughness, etc. Furthermore, one can also
directly obtain some useful information on the characteristics
of bonding and the structural stability of a crystal.

However, previous work by others [11–16] only addressed
the structural properties and electronic structure of NbB2 at
zero pressure. It is known that pressure is an important
parameter to tune physical properties, so it attracts us to
investigate the elastic and electronic properties of NbB2 under
pressure. To our knowledge, for the two superconductor
diborides (NbB2 and MgB2), only elastic constants [17, 18],
anisotropies and the electronic structure of MgB2 under
pressure have been computed successfully; there are few
investigations on the properties of NbB2 under pressure. In this
work, we investigate elastic properties and electronic structure
of NbB2 under pressure using the first-principles plane-
wave method within the generalized gradient approximation
(GGA).

2. Computational method

In this work, we focus on elastic properties and electronic
band structure of NbB2 under high pressures using the plane-
wave pseudopotential density functional theory method. Here
we employ non-local ultrasoft pseudopotentials introduced by
Vanderbilt [19], together with the Perdew–Burke–Ernzerhof
(PBE) generalized gradient approximation (GGA) exchange–
correlation functional [20]. The electronic wavefunctions
are expanded in a plane-wave basis set with energy cut-
off 400.0 eV. Pseudoatomic calculations are performed for
Nb 4s24p64d45s1 and B 2s22p1. As for the Brillouin-zone
sampling, we use the Monkhorst–Pack mesh with 12 × 12 ×
12 k-points, where the self-consistent convergence of the total
energy is set to 10−6 eV/atom. These parameters are sufficient

in leading to well converged total energy. All the electronic
structure calculations are implemented through the CASTEP
code [21, 22].

3. Results and discussion

3.1. Structure properties

The total energy electronic structure calculations are performed
over a range of primitive cell volume V from 0.82 V0 to
1.10 V0, in which V0 is the zero pressure equilibrium primitive
cell volume. No constraints are imposed on the c/a ratio,
i.e. the lattice constants a and c are optimized simultaneously.
For each volume, we determine the corresponding equilibrium
ratio c/a of NbB2 by performing total energy calculations
on a series of different c/a ratios and minimize the
energy as function of c/a. Through these calculations,
we can obtain the equilibrium parameters a and c and the
corresponding equilibrium ratio c/a of NbB2 under arbitrary
pressures. The calculated equilibrium lattice parameters are
listed in table 1, together with other theoretical [11–16] and
experimental [3, 14] data. The zero pressure bulk modulus B0

and the derivative of the bulk modulus with respect to pressure
B ′

0 are obtained from the Birch–Murnaghan equation of state
(EOS) [23], and are also shown in table 1. It is clear that our
results are in good agreement with the experimental data and
other theoretical results.

In figure 1(a), we exhibit the dependence on pressure
of the normalized lattice parameters c/a, a/a0, and c/c0 as
well as the normalized volume V/V0 (where a0, c0, and
V0 are the zero pressure equilibrium structure parameters).
Unfortunately, there are few experimental data to compare
with. The normalized intermolecular distances r1/r10 and
r2/r20 (where r10 and r20 are the zero pressure equilibrium
distances of Nb–B and B–B, respectively) are shown in
figure 1(b). We notice in figure 1(a) that, when pressure
increases, the equilibrium ratio c/a ranges from 1.081 at
−30 GPa to 1.049 at 80 GPa, i.e. decreases by about 2.96%;
the compression along the c-axis is much larger than that along
the a-axis in the basal plane. Figure 1(b) indicates that the
curve of r1/r10 (the distance between the Nb atom and the B
atom) becomes steeper as pressure increases, indicating that
the direction along Nb–B is compressed more easily. These
results agree with weaker Nb–B bonds that determine the
lattice parameter c. Moreover, the atoms in the interlayers
become closer, and the interactions between them become
stronger; contraction of Nb–B and B–B interatomic distances
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Table 2. Elastic constants Cij (GPa) and the bulk moduli Ba and Bc (GPa) at 0 GPa and 0 K.

C11 C12 C13 C33 C44 Ba Bc

Present work 576 114 198 430 210 940 742
References [11, 12] (NbB2) 517 95 120 528 122 797 557
Reference [17] (MgB2) 462 67 41 254 80 615 293
Reference [28] (VB2) 699 146 109 552 167 999 706
Reference [28] (ZrB2) 596 48 169 482 240 809 828
Exp. [29] (ZrB2) 568 57 121 436 248 772a 635a

Exp. [30] (TiB2) 660 48 93 432 260 851a 553a

a Derived from the experimental elastic constants.

Figure 1. (a) The normalized volume V/V0, a/a0, c/c0, and c/a as a
function of pressure at T = 0, where the rectangles, circles, and
triangles represent our obtained V/V0, a/a0, and c/c0 respectively,
and the blank ones are the results from [11]; (b) variation of the
normalized distance r/r0 between the atoms with pressure.

under pressure results in the change of bonding anisotropy
of NbB2 structure, which induces the variety of electronic
structure. The interlayer linear compressibility (d ln c/dp =
0.001 46 GPa−1) is about 1.38 times larger than that in the
basal plane (d ln a/d ln p = 0.001 09 GPa−1), in which B–B
bonds are covalent.

3.2. Elastic properties and anisotropies under pressure

To calculate the elastic constants under pressure, we have
applied the non-volume-conserving method. The complete
elastic constant tensor was determined from calculations of
the stresses induced by small deformations of the equilibrium
primitive cell, and thus the elastic constants Ci jkl are
determined as [24–26]

ci jkl =
(

∂σi j(x)

∂ekl

)
X

(1)

where si j and ekl are the applied stress and Eulerian strain
tensors, and X and x are the coordinates before and after the
deformation. For the isotropic stress, the elastic constants are
defined as [25–27]

ci jkl = Ci jkl + P

2
(2δi jδkl − δilδ jk − δikδ jl) (2)

Ci jkl =
(

1

V (x)

∂2 E(x)

∂ei j∂ekl

)
X

(3)

where Ci jkl are the second-order derivatives with respect to the
infinitesimal strain (Eulerian). For hexagonal crystals, there
are five independent elastic constants.

We have calculated the five independent elastic constants
of NbB2 using the stress–strain relation. In table 2, we list the
elastic constants of NbB2 at 0 K and 0 GPa. It is shown that the
differences between our results and Islam et al [11, 12] are a
bit large. Since there are no experimental data to compare with,
we here thus list the results of other similar types of diborides.
The lattice parameters listed in table 1 from our calculations
seem to be better than those by Islam et al, and we think that
our calculations for elastic constants should be reliable.

The mechanical anisotropy of NbB2 can be calculated
using the bulk moduli along the a and c axes, Ba and Bc

respectively, defined as

Ba = a
dp

da
= �

2 + α
, (4)

Bc = c
dp

dc
= Ba

α
, (5)

� = 2(C11 + C12) + 4C13α + C33α
2, (6)

α = C11 + C12 − 2C13

C33 − C13
. (7)

The calculated Ba and Bc at zero pressure are also
presented in table 2, together with results of others. The ratio

3
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Figure 2. (a) The elastic constants Cij and the bulk modulus B0 as a
function of pressure of NbB2; (b) variations of the Debye
temperature �D dependences on pressure.

Ba/Bc of NbB2 is 1.27 (2.10 for MgB2 [17], 1.54 for TiB2 [30],
1.42 for VB2 [28], 0.98 [28] and 1.22 [29] for ZrB2), which
is in agreement with the value of 1.43 presented by Islam
et al. The ratio Ba/Bc of NbB2 is smaller than MgB2, TiB2

and VB2, indicating the stronger interaction for NbB2. But in
comparison to ZrB2, the interaction of NbB2 is weaker.

The obtained values of C11, C12, C13, C33, C44, and
B0 at zero temperature versus pressure (up to 70 GPa) are
shown in figure 2. We found that the five independent elastic
constants and the bulk modulus B0 increase monotonically
with pressure. C11 and C33 vary rapidly as pressure increases,
and C12 becomes moderate as well as C13. However, C44

increases comparatively slowly with pressure. Unfortunately,
there are no experimental and theoretical data to compare our
elastic constants under pressure.

It is known that the acoustic velocities are obtained from
elastic constants by the Christoffel equation [31]

(Ci jkl n j nk − Mδil)μi = 0 (8)

where M = ρv2, Ci jkl is the fourth rank tensor description of
the elastic constants, n is the propagation direction, and μ is the

Figure 3. The anisotropies, elastic constant ratios C33/C11,
(C11 + C33 − 2C13)/4C44, 2C44/(C11 − C12), which can determine
the anisotropies of the compressional wave (	P ) and the shear wave
(	S1 and 	S2), are displayed as functions of various pressures. The
squares, circles and stars represent 	P , 	S1 and 	S2, respectively.

polarization vector; the acoustic anisotropy is defined as [32]

	i = Mi [nx ]
Mi [100] (9)

where nx is the extremal propagation direction and i is the
index of three types of elastic waves (one longitudinal and
two traversal polarizations of shear waves). By solving the
Christoffel equation (8) for hexagonal NbB2, the anisotropy of
the compressional wave is obtained from

	P = C33

C11
. (10)

The anisotropies of the wave polarized perpendicular to
the basal plane (S1) and the polarized basal plane (S2) are
calculated

	S1 = C11 + C33 − 2C13

4C44
, 	S2 = 2C44

C11 − C12
. (11)

The calculated pressure dependences of the anisotropies
	p,	S1 and 	S2 for the three types of elastic waves in NbB2

are illustrated in figure 3. It is noted that with increasing
pressure 	p and 	S2 increase but only slightly. However,
	S1 decreases sharply with pressure (due to the fact that
the elastic constants C11 and C33 are affected by pressure).
The anisotropy is only dependent on the symmetry of the
crystal. The structure of the crystal has been changed under
applied pressures because of the variations of c/a at various
pressures. Therefore, the elastic anisotropy is different due to
the variations of the elastic constants with pressure. This also
corresponds to the stronger covalent bonding in boron layers,
ionized magnesium atoms and weaker interlayer metallic
bonding for NbB2.
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Figure 4. Band structure of NbB2 at pressure (a) −20 GPa,
(b) 0 GPa, and (c) 30 GPa, where the dotted line represents the
π band.

3.3. Thermodynamic properties

As an important physical quantity, the Debye temperature
is closely related to the elastic constants, specific heat and
melting point. The vibrational excitations at low temperatures
arise solely from acoustic vibrations. So at low temperatures
the Debye temperature obtained from elastic constants is the
same as that determined from specific heat measurements. One
popular method to calculate the Debye temperature �D is from
elastic constants, i.e. �D is estimated from the average sound

velocity vm , via the following equation [33]:

�D = h

k

[
3n

4π

(
NAρ

M

)] 1
3

vm (12)

where h is the Planck’s constant, k is the Boltzmann’s constant,
NA is the Avogadro’s number, n is the number of atoms in the
molecule, M is the molecular weight, and ρ is the density. The
average wave velocity vm is approximately calculated from

vm =
[

1

3

(
2

v3
s

+ 1

v3
p

)]− 1
3

(13)

where vp and vs are the compressional and shear wave
velocity, respectively, which are obtained from the Navier’s
equation [34]:

vp =
√(

B + 4
3 G

)/
ρ, vs = √

G/ρ (14)

where G is the shear modulus. The Debye temperatures �D

of NbB2 are also exhibited at various pressures in figure 2(b).
At P = 0 GPa and T = 0 K, �D = 862.9 K, which is
higher than the theoretical value of 753.3 K calculated from
the elastic constants by Islam et al [11, 12]. Our calculated
value is close to those of TiB2 (970 K), VB2 (1038 K), ZrB2

(931 K) [28], and MgB2 (819 K) [35], which are also derived
from elastic constants. From figure 2(b), it is shown that the
Debye temperature increases monotonically with increasing
pressure.

3.4. Electronic structure of NbB2 under pressure

Finally, the effects of pressure on the band structure and the
density of states (DOS) of NbB2 are examined, where pressure
varies in the range from −20 to 30 GPa. The band structure
near the Fermi level at P = 0 GPa is shown in figure 4(b).
There are general features of the band structure which are in
good agreement with other studies [11, 13]. The two notable
types of band are the σ and π bands, which are formed by
the hybridizations of Nb d states, B s states and B p states.
In figure 4, above the Fermi level, the dotted line is the π

band, and the solid lines represent the σ band. The σ band
along the G–A line is doubly degenerate and makes a large
contribution to the DOS at the Fermi level. The band structures
under pressure along the symmetry directions are exhibited
in figures 4(a) and (c). Although there is a shift of position
under pressure, the dispersion increases only slightly. Due
to the maintaining of the symmetry of NbB2, the features of
the σ bands are hardly changed after applying pressure on
NbB2. Figure 5 displays the pressure dependence of the total
and partial density of states of NbB2 near the Fermi level,
where the vertical line is the Fermi level EF. The calculated
equilibrium density of states at the Fermi level EF (P = 0 GPa)
is 27.6 states/Hartree, which is in agreement with those of
other works [11, 13, 15]. The partial densities of states (DOSs)
of the s, p, and d electrons of Nb and the s and p electrons
of B at P = 0 are exhibited in figure 6. The features are
depicted as follows: there are high DOSs near the Fermi level;

5
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Figure 5. The total and partial DOS of NbB2 under pressure
(a) −20 GPa, (b) 0 GPa, and (c) 30 GPa.

moreover, the B p states and Nb d states contribute more
to the DOS at the Fermi level (figure 6). The value of the
DOS at EF reduces to 19.2 states/Hartree at P = 30 GPa.
The value of the DOS at EF decreases by as much as about

Figure 6. The partial DOS of s, p and d electrons of Nb and s and p
electrons of B at P = 0 Gpa.

30.5% as pressures vary from 0 to 30 GPa. This behavior is
similar to that observed in MgB2 [18]. The presences of the
sharp peaks are due to the covalent hybridization of Nb and B
atoms; their hybridization energy decreases with pressure. The
DOS at the Fermi level is an important parameter known to
affect the superconducting transition temperature Tc. Judging
from Bardeen–Cooper–Schrieffer superconducting theory, the
reducing density of states at the Fermi level [36] shows that
the transition temperature Tc decreases as pressures increase,
which is consistent with the Tc–P relation obtained by Islam
et al [11].

4. Conclusion

In summary, we have focused our attention on the elastic
constants and the anisotropy as well as the density
of states (DOS) under high pressures by using plane-
wave pseudopotential density functional theory within the
generalized gradient approximation (GGA). We have obtained
the pressure dependence of structural parameters a, c, c/a, V
and r (the distance of Nb–B, B–B) through performing
total energy calculations over a range of the primitive cell
volumes. The results are in agreement with other theoretical
data. The pressure dependences of elastic constants and
bulk modulus are also obtained. It is found that the elastic
constants and the Debye temperature increase monotonically
and the anisotropy is weakened with pressure. Moreover,
the density of states (DOS) of NbB2 at Fermi level under
pressure decreased. The shift of positions of the sharp
peaks near the Fermi level resulted from the charge transfer
σ–π with pressure, which may indicate a decrease of the
superconducting transition temperature Tc with pressure, in
agreement with other theoretical results.
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